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Abstract. In this work we study a Lipschitz stability result in the reconstruction of a compactly5
supported initial temperature for the heat equation in Rn, from measurements along a positive time6
interval and over an open set containing its support. We take advantage of the explicit dependency of7
solutions to the heat equation with respect to the initial condition. By means of Carleman estimates8
we obtain an analogous result for the case when the observation is made along an exterior region ω×9
(τ, T ), such that the unobserved part Rn\ω is bounded. In the latter setting, the method of Carleman10
estimates gives a general conditional logarithmic stability result when initial temperatures belong to11
a certain admissible set, and without the assumption of compactness of support. Furthermore, we12
apply these results to deduce a similar result for the heat equation in R for measurements available13
on a curve contained in R × [0,∞), from where a stability estimate for an inverse problem arising14
in 2D Fluorescence Microscopy is deduced as well. In order to further understand this Lipschitz15
stability, in particular, the magnitude of its stability constant with respect to the noise level of the16
measurements, a numerical reconstruction is presented based on the construction of a linear system17
for the inverse problem in Fluorescence Microscopy. We investigate the stability constant with the18
condition number of the corresponding matrix.19

Key words. Backward Heat Equation, Lipschitz stability, Inverse Problem, Fluorescence Mi-20
croscopy.21
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1. Introduction. In this paper we consider the heat equation in Rn:23

(1.1)


ut −∆u = 0 in Rn × (0, T ),
u(y, 0) = u0(y) in Rn,

lim
|y|→∞

u(y, t) = 0 t ∈ (0, T ).
24

We are interested in the reconstruction of the initial temperature u0 when measure-25

ments are available in a certain open region. This problem is known as the backward26

heat equation inverse problem and is an ill-posed problem in the sense of Hadamard27

[10], i.e., small noise on observations may cause large errors in the reconstruction of28

the initial condition. Ill-posedness may be overcome by incorporating a priori infor-29

mation about the solutions. A common hypothesis that frequently appears in the30

literature consists in assuming that the initial condition belongs to a bounded set of31

some Sobolev space [7, 12, 15, 23, 24]. This approach is taken into account in order to32

deduce a conditional logarithmic stability when measurements are made on ω×(τ, T ),33
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2 P. ARRATIA, M. COURDURIER, E. CUEVA, A. OSSES AND B. PALACIOS

for 0 ≤ τ < T and ω an open set with bounded complement. Namely, given β > 034

and M > 0, we consider the following admissible set:35

(1.2) Aβ,M := {a ∈ H2β(Rn) : ||a||H2β(Rn) ≤M}.36

The conditional logarithmic stability is stated as follows:37

Theorem 1.1. Let u be a solution of (1.1) with u0 ∈ Aβ,M . Let ω × (τ, T ) be38

the observation region where 0 ≤ τ < T and ω ⊆ Rn is an open set such that Rn\ω39

is compact. Let us suppose that ||u||L2(ω×(τ,T )) < 1. Then, there exist constants40

κ ∈ (0, 1) and C1 = C1(M,β, τ, T, ω) > 0 such that41

||u0||L2(Rn) ≤ C1(− log ||u||L2(ω×(τ,T )))
−κ.42

To conclude this result, we use a Carleman inequality obtained in [13]. The43

main problem is that the inequality established in [13] does not hold for unbounded44

domains such as Rn. In order to be able to apply the Carleman estimate, we use some45

ideas taken from [3], where null controllability for the heat equation is proved for a46

control region with bounded complement. Such a large region of control seems to be47

necessary, as shown in [17, 18].48

The main result of this paper is in the context of compactly supported initial49

conditions, where the above logarithmic inequality can be improved to a Lipschitz50

one. The precise result is stated in Theorem 1.2 below. It is in fact a consequence of51

an analogous result, Theorem 1.3, for the closely related inverse problem of backward52

heat propagation with observation in an open region surrounding the support of the53

initial heat profile.54

Theorem 1.2. For R > 0 we define B := B(0, R) the ball of radius R and55

centered at the origin. Let 0 ≤ τ < T and ω ⊆ Rn be such that Rn\ω is compact and56

B ⊆ Rn\ω. Let u0 ∈ L1(Rn) be with supp(u0) ⊆ B and u be the respective solution57

of (1.1). Then there exists a constant C2 = C2(R, τ, T, ω) > 0 such that58

||u0||L1(Rn) ≤ C2||u||L2(ω×(τ,T )).59

Theorem 1.3. Let B be as before. If u0 ∈ L1(Rn) with supp(u0) ⊆ B, then there60

exists a constant C3 = C3(R, t1, t2) > 0, for 0 < t1 < t2, such that61

||u0||L1(Rn) ≤ C3||u||L2(2B×(t1,t2)).62

Theorem 1.3 states that we can get an estimate of the initial condition u0 with63

respect to observations made on an open set containing the support of u0 and for64

times in a positive interval, while Theorem 1.2 states the analogous result for exterior65

measurements. To the best of our knowledge, few results about Lipschitz stability for66

backward heat equation exist in the literature. In [24], a similar estimate is obtained67

for the reconstruction of the solution at a positive time t > 0 and measurements68

acquired on a subdomain, while in [20], a Lipschitz stability estimate is obtained for69

the problem of reconstructing the initial condition, although with a very strong norm70

associated to the (boundary) observations that involve the use of time derivatives71

of all orders. In our case, we exploit the explicit dependency on the heat equation72

solution in all of Rn with respect to the initial condition, as the convolution with the73

heat kernel.74
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LIPSCHITZ STABILITY FOR BACKWARD HEAT EQUATION 3

The study of the backward heat equation with compactly supported initial con-75

ditions arises from an inverse problem related to the microscopy technique performed76

by a Light Sheet Fluorescence Microscope (LSFM) [9, 11, 14]. Images obtained from77

this kind of microscopes present undesirable properties such as blurring and calibra-78

tion problems so that, in order to improve the final images, a mathematical direct79

model was established in [6] with the aim of characterizing and analyzing the imag-80

ing modality as an inverse problem. Such approach is applied to the imaging of two81

dimensional specimens, where the light sheet illumination reduces to a laser beam82

emitted at different heights y. The fluorescent distribution is denoted by µ and is the83

physical quantity to be reconstructed. At the end of the process, the measurement84

p(s, y) obtained at pixel s of the camera for the illumination at height y ∈ Ys is given85

by the following expression:86

(1.3)

p(s, y) = c · exp

(
−
∫ s

γ(y)

λ(τ, y)dτ

)∫
R

µ(s, r)e−
∫∞
r
a(s,τ)dτ√

4πσ(s, y)
exp

(
− (r − h)2

4σ(s, y)

)
dr,87

where88

σ(s, y) =
1

2

∫ s

γ(y)

(s− τ)2ψ(τ, y)dτ.89

Here, λ, a and ψ are physical parameters related with attenuation or scattering and90

γ is a function related with the geometry of Ω, more specifically, γ(y) is defined such91

that (γ(y), y) is the first point at height y belonging to ∂Ω. These and other terms92

shall be presented in detail in section 5.93

If we fix pixel s and take94

u0(y) := µ(s, y)e−
∫∞
y
a(s,τ)dτ ,95

the solution u of (1.1) with n = 1 evaluated in (y, σ(s, y)) gives us the measurement96

obtained by the camera at the pixel s for an illumination made at height y. Fur-97

thermore, µ is compactly supported, hence µ(s, ·) is as well. The relation between98

measurements and u is given by the next expression:99

p(s, y) = c · exp

(
−
∫ s

γ(y)

λ(τ, y)dτ

)
u(y, σ(s, y))

⇐⇒ u(y, σ(s, y)) =
1

c
exp

(∫ s

γ(y)

λ(τ, y)dτ

)
p(s, y).

100

This tells us that if we know physical the parameters λ, ψ and a, then we have access101

to measurements of u along the curve Γ = {(y, σ(s, y)) : y ∈ Ys} ⊆ R × (0, T ).102

Consequently, the inverse problem consists in the recovery of the initial temperature103

from these observations.104

Uniqueness has been proved in [6] based on classical unique continuation results105

for parabolic equations. In this paper we also study the Lipschitz stability in the recon-106

struction of the fluorescence source µ from measurements available on Γ. This result107

will be a direct consequence of the following theorem for the reconstruction of the108

initial temperature from observations made on a curve contained in R× [0,∞), which109

is constructed as the graph of a function σ that satisfies the following σ-properties:110

i) σ ∈ C1(R),111

ii) σ > 0 for y ∈ (a1, a2) and σ(y) ≡ 0 for y ∈ (a1, a2)c, for some a1 < a2,112
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4 P. ARRATIA, M. COURDURIER, E. CUEVA, A. OSSES AND B. PALACIOS

iii) there exists ξ1, ξ2 > 0 such that σ′ > 0 in (a1, a1 + ξ1], σ′ < 0 in [a2− ξ2, a2) and113

σ(a1 + ξ1) = σ(a2 − ξ2),114

iv)
1

σ′(y)
= O

(
exp

(
1

σ(y)

))
as y goes to a+

1 , a
−
2 .115

The theorem is stated as follows:116

Theorem 1.4. Consider σ : R → R+ a function satisfying the σ-properties. Let117

u be the solution of (1.1) with n = 1 for some u0 ∈ L1(R) such that supp(u0) ⊂118

(a1 + δ, a2 − δ), where 0 < δ < (a2 − a1)/2. Let ΓL := {(y, σ(y)) : y ∈ (−∞, a1 + ξ1]}119

and ΓR := {(y, σ(y)) : y ∈ [a2 − ξ2,∞)} be two curves contained in R× [0,∞) where120

measurements are available. Then there exists a constant C4 = C4(σ, δ) > 0 such that121

||u0||L1(R) ≤ C4||u||L1(ΓL∪ΓR)122

Remark 1.5. The mentioned σ-properties, specially the last one, may not be nec-123

essary conditions to conclude Theorem 1.4, but are suitable for the LSFM inverse124

problem.125

In particular, this theorem implies uniqueness for the inverse problem. Numerical126

results are carried out after discretizing (1.3). Notice that measurements are linear127

with respect to µ, hence we investigate the stability of the LSFM problem by solving128

a linear system. Moreover, for the matrix associated, we study its condition number129

in order to appreciate the behavior of the stability constant. At this point we have130

to be careful: a Lipschitz type stability may be good from the mathematical point131

of view, but if the constant is too large with respect to noise level measurements,132

then the numerical reconstruction may not be satisfactory. Finally, we consider what133

happens with the reconstruction when the physical parameters λ, a and ψ depend on134

µ, i.e., are also unknown.135

The paper is organized as follows: section 2 is devoted to demonstrate Theo-136

rem 1.1. There, we introduce Theorem 2.1 to show an energy estimate of u which137

is used later in section 3 to prove Theorem 1.3. In section 4 we prove Theorem 1.4.138

Section 5 proves the stability of the 2D LSFM inverse problem. Finally, section 6139

studies from the numerical point of view the result obtained for the LSFM problem.140

2. Conditional Logarithmic Stability. As said before, since the backward141

heat equation inverse problem is a well known ill-posed problem, we use the admissible142

set Aβ,M previously defined in (1.2) to add some a priori information on the solution.143

To prove Theorem 1.1 let us demonstrate two theorems:144

Theorem 2.1. Let 0 ≤ τ < T and ω ⊆ Rn be an open set such that Rn\ω is145

compact. Let u be a solution of (1.1). Then for all 0 < ε < (T − τ)/2 there exists a146

constant C5 = C5(ε, τ, T, ω) > 0 such that147

||ut||L2(τ+ε,T−ε;H−1(Rn)) + ||u||L2(τ+ε,T−ε;H1(Rn)) ≤ C5||u||L2(τ,T ;L2(ω)).148

Remark 2.2. The above result holds true even for τ = 0 but the constant C5149

tends to ∞ as ε tends to 0.150

Remark 2.3. Theorem 2.1 holds true also after replacing Rn by an unbounded151

domain Ω of class C2 uniformly. This could help to extend the logarithmic stability152

to a more general unbounded set (not only Rn), however, Theorem 2.5 below fails153

when dealing with such sets. Hence, the conditional logarithmic stability for a general154

unbounded set when measurements are made in the region ω×(τ, T ) remains an open155

problem.156
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LIPSCHITZ STABILITY FOR BACKWARD HEAT EQUATION 5

Proof of Theorem 2.1. We follow [3] to get an estimate of ||u||L2(τ+ε,T−ε;L2(Rn)).157

To estimate ||∇u||2L2(τ+ε,T−ε;L2(Rn)) we make a slight modification to the same ar-158

gument to conclude. Finally, ||ut||L2(τ+ε,T−ε;H−1(Rn)) is directly estimated from the159

heat equation (1.1). In the points I)-III) presented below, we respectively estimate160

each one of these terms:161

I) Estimation of ||u||L2(τ+ε,T−ε;L2(Rn)). Let δ > 0 small enough. Without loss of162

generality we may assume that Rn\ω is connected. Then, we define a cut-off163

function ρ ∈ C∞(Rn) as follows:164  ρ = 1 in Rn\ω
ρ = 0 in ωδ := {x ∈ ω : d(x, ∂ω) > δ}

ρ ∈ (0, 1] in ω\ωδ.
165

The aim of this function is to localize the solution in the bounded set where166

observations are not available. Consider θ = ρu and let Θ = {x ∈ Rn : ρ(x) > 0}.167

Notice that θ = 0 in Rn\Θ and since u satisfies (1.1), then θ satisfies the following168

parabolic equation in a bounded domain:169

(2.1)

 θt −∆θ = g in Θ× (0, T )
θ = 0 on ∂Θ× (0, T )

θ(x, 0) = ρu0(x) in Θ,
170

where g = −∆ρu− 2∇ρ · ∇u. Since Θ is bounded, we can apply the Carleman171

estimate shown in [13] with l = 1. More precisely, let ν be defined as below (we172

refer to [4], lemma 1.1, for the existence of such function):173 
ν ∈ C2(Θ̄)
ν > 0 in Θ, ν = 0 on ∂Θ

∇ν 6= 0 in Θ\ω
174

and consider the following Carleman weights:175

(2.2) ξ(x, t) =
eλν(x)

(t− τ)(T − t)
, ζ(x, t) =

eλν(x) − e2λ||ν(x)||C(Θ)

(t− τ)(T − t)
.176

Thus, from [13] we know that the next Carleman estimate holds: there exists177

λ̂ > 0 such that for an arbitrary λ ≥ λ̂ there exists s0(λ) and a constant C > 0178

satisfying179

(2.3)

∫ T

τ

∫
Θ

(
1

sξ
|∇θ|2 + sξ|θ|2

)
e2sζdxdt

≤ C

(
||gesζ ||2L2(τ,T ;H−1(Θ)) +

∫ T

τ

∫
Θ∩ω

sξ|θ|2e2sζdxdt

)
∀s ≥ s0(λ),

180

where θ is the solution of (2.1). Let us estimate the terms in the right and left181

hand sides of (2.3):182

• Recall that g = −∆ρu − 2∇ρ · ∇u. Noticing that ∆ρ = 0 in Θ\ω and183

esζ < 1 (since ζ < 0), the first term is directly estimated as follows184

||∆ρuesζ ||2L2(τ,T ;H−1(Θ)) ≤ C||u||
2
L2((τ,T )×ω),185

This manuscript is for review purposes only.



6 P. ARRATIA, M. COURDURIER, E. CUEVA, A. OSSES AND B. PALACIOS

where the constant C > 0 depends on ρ. For the second term, we notice186

that187

−2(∇ρ · ∇u)esζ = −2∇ · (uesζ∇ρ) + 2uesζ∆ρ+ 2usesζ∇ρ · ∇ζ.188

Again, ∇ρ = 0, ∆ρ = 0 in Θ\ω, esζ < 1. Besides, noticing that there exists189

s1 > 0 such that

∣∣∣∣sesζ ∂ζ∂xi
∣∣∣∣ < 1, ∀i ∈ {1, . . . , n}, we have that190

||2(∇ρ · ∇u)esζ ||2L2(τ,T ;H−1(Θ)) ≤ C||u||
2
L2(τ,T ;L2(ω)), ∀s ≥ s1.191

The constant C > 0 depends on ρ. Finally, we conclude that192

(2.4) ||gesζ ||2L2(τ,T ;H−1(Θ)) ≤ C||u||
2
L2((τ,T )×ω), ∀s ≥ s1.193

• We define the functions ξ̂, ζ̂ as in (2.2) but with λ = λ̂. Since ν ∈ C2(Θ)194

there exist constants η1, η2 > 0 such that195

η1

(t− τ)(T − t)
≤ ξ̂ ≤ η2

(t− τ)(T − t)
.196

Finally, let ŝ := max{s0(λ̂), s1}. Inequality (2.3) leads to197

(2.5)

∫ T

τ

∫
Θ

(
(t− τ)(T − t)

ŝ
|∇θ|2 +

ŝ

(t− τ)(T − t)
|θ|2
)
e2ŝζ̂dxdt

≤ C

(
||u||2L2((τ,T )×ω) +

∫ T

τ

∫
Θ∩ω

ŝ

(t− τ)(T − t)
|θ|2e2ŝζ̂dxdt

)
.

198

We now estimate the weights in (2.5) using the following lemma from [3]:199

Lemma 2.4. Let k,K be two positive constants such that200

k ≤ e2λ̂||ν||C(Θ) − eλ̂ν(x) ≤ K, x ∈ Θ.201

Then, for x ∈ Θ and 0 < ε < (T − τ)/2 we have202 ∣∣∣∣∣∣∣∣ ŝ

(t− τ)(T − t)
e2ŝζ̂

∣∣∣∣∣∣∣∣
L∞((Θ∩ω)×(τ,T ))

≤ 1

2k
e−1,203

(t− τ)(T − t)
ŝ

e2ŝζ̂ ≥ ε(T − τ − ε)
ŝ

exp

(
−2ŝK

ε(T − τ − ε)

)
, t ∈ [τ + ε, T − ε] .204

From this lemma, the left-hand side in (2.5) takes the form205

(2.6)

∫ T

τ

∫
Θ

(
(t− τ)(T − t)

ŝ
|∇θ|2 +

ŝ

(t− τ)(T − t)
|θ|2
)
e2ŝζ̂dxdt

≥
∫ T−ε

τ+ε

∫
Θ

(t− τ)(T − t)
ŝ

|∇θ|2e2ŝζ̂dxdt

≥ C(ε)

∫ T−ε

τ+ε

∫
Θ

|∇θ|2dxdt,

206
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LIPSCHITZ STABILITY FOR BACKWARD HEAT EQUATION 7

where C(ε) is the lower bound of the last inequality in Lemma 2.4 and tends to207

0 as ε tends to 0. On the other hand, the second term in the right-hand side in208

(2.5) is estimated as follows:209

(2.7)

∫ T

τ

∫
Θ∩ω

ŝ

(t− τ)(T − t)
|θ|2e2sζdxdt ≤ 1

2k
e−1

∫ T

τ

∫
Θ∩ω
|θ|2dxdt

(since ρ < 1 in Θ ∩ ω) ≤ 1

2k
e−1

∫ T

τ

∫
Θ∩ω
|u|2dxdt

≤ C||u||2L2(τ,T ;L2(ω)).

210

Thus, from (2.5), (2.6) and (2.7) we have that211

(2.8)

∫ T−ε

τ+ε

∫
Θ

|∇θ|2dxdt ≤ C

C(ε)
||u||2L2(τ,T ;L2(ω)).212

Since θ is null on ∂Θ, we use λ1 the first eigenvalue of −∆ in H1
0 (Θ). Further-213

more, ρ = 1 in Rn\ω, hence214

λ1

∫ T−ε

τ+ε

∫
Rn\ω

|u|2dxdt = λ1

∫ T−ε

τ+ε

∫
Rn\ω

|θ|2dxdt ≤
∫ T−ε

τ+ε

∫
Θ

|∇θ|2dxdt.215

Hence we conclude that216

(2.9) ||u||2L2(τ+ε,T−ε;L2(Rn)) ≤
C

λ1C(ε)
||u||2L2((τ,T )×ω).217

II) Estimation of ||∇u||L2(τ+ε,T−ε;L2(Rn)). We focus on the second inequality in218

Lemma 2.4 but for t ∈ [τ + ε/2, T − ε]. When t is in the latter interval we have219

the following estimate:220

(t− τ)(T − t)
ŝ

e2ŝζ̂ ≥ ε/2(T − τ − ε/2)

ŝ
exp

(
−2ŝK

ε/2(T − τ − ε/2)

)
=: C̄(ε).221

Same calculations as in the previous item lead to222

(2.10)

∫ T−ε

τ+ε/2

∫
Rn
|u|2dxdt ≤ C

λ1C̄(ε)
||u||2L2(τ,T ;L2(ω)).223

Let χ(t) ∈ C∞([τ, T ]), with χ(t) = 0 for t ∈ [τ, τ + ε/2], χ(t) strictly increasing224

in (τ + ε/2, T − ε), and χ(t) = 1 in [T − ε, T ]. Multiplying the heat equation225

(1.1) by uχ(t) and integrating over Rn, we get226 ∫
Rn
|∇u|2χdx+

1

2

d

dt

∫
Rn
u2χdx =

1

2

∫
Rn
u2χtdx.227

Now, integrating over [τ + ε/2, t]:228 ∫ t

τ+ε/2

∫
Rn
|∇u|2χdxdt+

1

2

∫
Rn
u2(t)χ(t)︸ ︷︷ ︸
≥0

−u2(τ + ε/2)χ(τ + ε/2)︸ ︷︷ ︸
=0, since χ(τ+ε/2)=0

dx

=
1

2

∫ t

τ+ε/2

∫
Rn
u2χtdxdt,

229
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therefore230 ∫ t

τ+ε/2

∫
Rn
|∇u|2χdxdt ≤ 1

2

∫ t

τ+ε

∫
Rn
u2χtdxdt ≤ ||χt||∞

∫ T−ε

τ+ε/2

∫
Rn
u2dxdt.231

Evaluating at t = T − ε and using (2.10) we have232

(2.11)

∫ T−ε

τ+ε/2

∫
Rn
|∇u|2χdxdt ≤ ||χt||∞

∫ T−ε

τ+ε/2

∫
Rn
u2dxdt

≤ C||χt||∞
λ1C̄(ε)

||u||2L2(τ,T ;L2(ω)).

233

Since χ is increasing in (τ + ε, T − ε) the left-hand side leads234

(2.12)

∫ T−ε

τ+ε/2

∫
Rn
|∇u|2χdxdt ≥

∫ T−ε

τ+ε

∫
Rn
|∇u|2χdxdt

≥ χ(τ + ε)

∫ T−ε

τ+ε

∫
Rn
|∇u|2dxdt.

235

Bringing (2.11) and (2.12) together we get236

(2.13)

∫ T−ε

τ+ε

∫
Rn
|∇u|2dxdt ≤ C||χt||∞

C̄(ε)χ(τ + ε)
||u||2L2(τ,T ;L2(ω)).237

Hence, with (2.9) and (2.13) we conclude:238

||u||2L2(τ+ε,T−ε;H1(Rn)) ≤ C5||u||2L2(ω×(τ,T )),239

where240

C5 = exp

(
2ŝK

ε(T − τ − ε)

)
max

{
C

λ1ε(T − τ − ε)
,

C

λ1ε(T − τ − ε/2)

||χt||∞
χ(τ + ε)

}
.241

III) Estimation of ||ut||2L2(τ+ε,T−ε;H−1(Rn)). Multiplying (1.1) by v ∈ H1(Rn) it242

follows that243 ∫
Rn
utvdx = −

∫
Rn
∇u · ∇vdx.244

Integrating over (τ+ε, T−ε) and using the estimate obtained before we conclude245

||ut||2L2(τ+ε,T−ε;H−1(Rn)) ≤ ||u||
2
L2(τ+ε,T−ε;H1(Rn)) ≤ C5||u||2L2(ω×(τ,T )).246

In the next theorem we assume that the initial condition belongs to the admissible247

set Aβ,M defined in section 1.248

Theorem 2.5. Let 0 ≤ τ < T and ω ⊆ Rn be such that Rn\ω is compact. Let u249

be a solution of (1.1) with initial condition u0 ∈ Aβ,M . Then, for every α > 0 and250

0 < ε < (T − τ)/2 there exists a positive constant C6 = C6(α, ε, τ, T, ω) such that251

||u||C([τ+ε,T−ε];L2(Rn)) ≤ C6||u||
2α

2α+1

L2(ω×(τ,T )).252

Remark 2.6. The main consequence of this theorem is a Hölder estimate of the253

solution u at any time τ + ε ≤ t ≤ T − ε:254

||u(·, t)||L2(Rn) ≤ C6||u||
2α

2α+1

L2(ω×(τ,T )).255

This manuscript is for review purposes only.



LIPSCHITZ STABILITY FOR BACKWARD HEAT EQUATION 9

Proof. From Theorem 2.1 there exists a constant C5 > 0 such that256

||u||H1(τ+ε,T−ε;H−1(Rn)) ≤ C5||u||L2(ω×(τ,T )),257

and using the Sobolev embedding (see theorem 4.12 in [1]) we conclude that258

(2.14) ||u||C([τ+ε,T−ε];H−1(Rn)) ≤ C5||u||L2(ω×(τ,T )).259

We now estimate ||u||C([τ+ε,T−ε];H2α(Rn)) for some given α > 0 and conclude the260

result by interpolation of Sobolev spaces.261

Recall that for a ∈ H2α(Rn) we have (see e.g. [19], proposition 3.4)262

(2.15)
||a||2H2α(Rn) = ||a||2L2(Rn) + |a|2H2α(Rn)

≤ c(||a||2L2(Rn) + ||(−∆)αa||2L2(Rn)),
263

where | · |Hα(Rn) is the seminorm of Gagliardo for fractional Sobolev spaces and c =264

c(n, α) is a positive constant.265

Recall also that u(·, t) = et∆u0, where et∆ corresponds to the heat semigroup.266

Let us estimate the term ||(−∆)αu||L2(Rn) via Fourier. Notice that267

F((−∆)αet∆u0) = |ξ|2αe−t|ξ|
2

û0.268

The function r ∈ [0,∞) → r2αe−tr
2

reaches its maximum at r =
√

α
t with value269

ααe−α

tα
, so we conclude that270

(2.16) ||(−∆)αet∆u0||L2(Rn) = |||ξ|2αe−t|ξ|
2

û0||L2(Rn) ≤
C(α)

tα
||u0||L2(Rn).271

Bringing (2.15) and (2.16) together, and since u0 ∈ Aβ,M , we get272

(2.17)
||u||C([τ+ε,T−ε];H2α(Rn)) = sup

t∈[τ+ε,T−ε]
||u(·, t)||H2α(Rn)

≤ c sup
t∈[τ+ε,T−ε]

(
||u(·, t)||2L2(Rn) +

C2(α)

t2α
||u0||2L2(Rn)

)1/2

≤ c sup
t∈[τ+ε,T−ε]

(
||u0||2L2(Rn) +

C2(α)

(τ + ε)2α
||u0||2L2(Rn)

)1/2

≤ cM

(
1 +

C2(α)

(τ + ε)2α

)1/2

.

273

Finally, we use (2.14) and (2.17), and conclude via interpolation theory (proposi-274

tion 2.3 [16] and section 2.4.1 in [22] or theorem 4.1 in [5]) taking s = 0, s0 = −1, s1 =275

2α and θ = 2α
2α+1 (so that s = θs0 + (1− θ)s1):276

||u||C([τ+ε,T−ε];L2(Rn)) ≤ ||u||
2α

2α+1

C([τ+ε,T−ε];H−1(Rn))||u||
1

2α+1

C([τ+ε,T−ε];H2α(Rn))

≤

[
cM

(
1 +

C2(α)

(τ + ε)2α

)1/2
] 1

2α+1

C
2α

2α+1

5︸ ︷︷ ︸
=:C6

||u||
2α

2α+1

L2(ω×(τ,T )).

277
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Let us now derive the conditional logarithmic stability estimate:278

Proof of Theorem 1.1. It suffices to follow steps 2 and 3 in the proof of theorem279

2.1 of [15]. First of all, the function t → ||u(·, t)||2L2(Rn) is log-convex, then, for280

0 ≤ t ≤ θ, we note that t = 0 · (1− t/θ) + θ · (t/θ) is a convex combination, hence281

||u(·, t)||2L2(Rn) ≤ ||u0||2(1−t/θ)
L2(Rn) ||u(·, θ)||2t/θL2(Rn) ≤M

2(1−t/θ)||u(·, θ)||2t/θL2(Rn).282

Integrating from 0 to θ it yields283 ∫ θ

0

||u(·, t)||2L2(Rn)dt ≤ M2

∫ θ

0

( ||u(·, θ)||L2(Rn)

M

)2t/θ

dt

= θ

(
||u(·, θ)||2L2(Rn) −M

2

log(||u(·, θ)||2L2(Rn))− log(M2)

)
.

284

Due to the logarithm concavity, the right-hand side of the previous estimate is285

an increasing function with respect to the term ||u(·, θ)||L2(Rn), which together with286

Theorem 2.5 implies that287

∫ θ

0

||u(·, t)||2L2(Rn)dt ≤ θ

 C2
6 ||u||

4α
2α+1

L2(ω×(τ,T )) −M
2

log(C2
6 ||u||

4α
2α+1

L2(ω×(τ,T )))− log(M2)

 .288

Now we have two cases: C6 ≤M or M ≤ C6. We study the first case, the second289

one is analogous. If C6 ≤M then290

∫ θ

0

||u(·, t)||2L2(Rn)dt ≤M
2θ

 C2
6

M2 ||u||
4α

2α+1

L2(ω×(τ,T )) − 1

log(
C2

6

M2 ||u||
4α

2α+1

L2(ω×(τ,T )))

 .291

The right-hand side is increasing as a function of C6/M and C6/M ≤ 1, hence292

∫ θ

0

||u(·, t)||2L2(Rn)dt ≤M
2θ

 ||u|| 4α
2α+1

L2(ω×(τ,T )) − 1

log(||u||
4α

2α+1

L2(ω×(τ,T )))

 .293

Since measurements are sufficiently small, i.e., ||u||L2(ω×(τ,T )) < 1, we have that294

log ||u||
4α

2α+1

L2(ω×(τ,T )) < 0,295

then296 ∫ θ

0

||u(·, t)||2L2(Rn)dt ≤M
2θ

2α+ 1

4α
(− log ||u||L2(ω×(τ,T )))

−1.297

If M ≤ C6, we can follow the same steps obtaining that298 ∫ θ

0

||u(·, t)||2L2(Rn)dt ≤ C
2
6θ

2α+ 1

4α
(− log ||u||L2(ω×(τ,T )))

−1
299

In conclusion, we get the following estimate300

(2.18) ||u||L2(0,θ;L2(Rn)) ≤ max{C6,M}
(
θ

2α+ 1

4α

)1/2

(− log ||u||L2(ω×(τ,T )))
−1/2.301
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In order to conclude we shall estimate the norms ||u||W 1,p(0,θ;L2(Rn)) and302

||u||Lp(0,θ;L2(Rn)) for some p > 1 and use interpolation of Sobolev spaces and Sobolev303

embeddings. On one side we have that304

ut(·, t) = ∆et∆u0 = −(−∆)1−βet∆(−∆)βu0305

and thanks to the fractional Laplacian properties (recall (2.16)):306

||ut(·, t)||L2(Rn) ≤
C(β)

t(1−β)
||(−∆)βu0||L2(Rn).307

Let 1 < p < 1/(1− β). Using that u0 ∈ Aβ,M we get that308 ∫ θ

0

||ut(·, t)||pL2(Rn)dt ≤ C(β)

∫ θ

0

1

tp(1−β)
dt ||(−∆)βu0||pL2(Rn)

≤ C(β)
θ1−p(1−β)

1− p(1− β)
|u0|pH2β(Rn)

≤ C(β)
θ1−p(1−β)

1− p(1− β)
Mp,

309

that is310

(2.19) ||ut||pLp(0,θ;L2(Rn)) ≤ C(β,M, θ).311

On the other side,312

(2.20)

∫ θ

0

||u(·, t)||pL2(Rn)dt ≤
∫ θ

0

||u0||pL2(Rn)dt ≤M
pθ.313

Bringing (2.19) and (2.20) together we deduce314

(2.21) ||u||W 1,p(0,θ;L2(Rn)) ≤ C(β,M, θ).315

The previous constant decreases with θ, which means that the stability constant316

decreases when initial time of observation τ is closer to 0. Taking p ≤ 2, we can use317

(2.18) but with Lp norm in time:318

(2.22) ||u||Lp(0,θ;L2(Rn)) ≤ θ1/p−1/2||u||L2(0,θ;L2(Rn)) ≤ C(− log ||u||L2(ω×(τ,T )))
−1/2.319

Again, we interpolate estimates (2.21) and (2.22) so that for 0 < s < 1320

||u||W 1−s,p(0,θ;L2(Rn)) ≤ C(− log ||u||L2(ω×(τ,T )))
−s/2.321

Letting s such that (1−s)p > 1 we can use the Sobolev embedding and conclude with322

κ = s/2:323

||u||C([0,θ];L2(Rn)) ≤ C||u||W 1−s,p(0,θ;L2(Rn)) ≤ C1(− log ||u||L2(ω×(τ,T )))
−s/2.324

3. Conditional Lipschitz Stability. In this section we prove the main results325

of this paper, Theorem 1.3, which provides a Lipschitz stability inequality in the re-326

covery of the initial condition when observations are made on some interval (t1, t2),327

with 0 < t1 < t2, and in an open domain containing the support of the initial con-328

dition. Theorem 1.2 gives a similar conclusion when measurements are made on an329

unbounded domain that does not necessarily contain the support of the initial condi-330

tion. This last theorem follows directly from Theorem 2.1 and Theorem 1.3 and will331

be used later in section 4.332

To demonstrate Theorem 1.3 let us prove first the following lemma whose main333

hypothesis is that u0 ≥ 0:334
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Lemma 3.1. If u0 ∈ L1(Rn), u0 ≥ 0 and supp(u0) ⊆ B := B(0, R), for some335

R > 0. Then, for t > 0 there exists a constant C7 = C7(R, t) > 0 such that336

||u0||L1(Rn) ≤ C7||u(·, t)||L2(2B).337

Proof. We recall that u takes the explicit form338

(3.1) u(y, t) =

∫
Rn
u0(r)

e−
|y−r|2

4t

(4πt)n/2
dr.339

Since u0 ≥ 0 and the heat kernel integrates 1 for any t > 0 we have340

(3.2)

||u0||L1(Rn) =

∫
Rn
u0(r)dr =

∫
Rn

∫
Rn
u0(r)

e−
|y−r|2

4t

(4πt)n/2
drdy

=

∫
|y|<2R

∫
Rn
u0(r)

e−
|y−r|2

4t

(4πt)n/2
drdy

+

∫
|y|>2R

∫
Rn
u0(r)

e−
|y−r|2

4t

(4πt)n/2
drdy.

341

The first integral on the right hand side is easily bounded by Cauchy-Schwarz342

and recalling (3.1):343

(3.3)

∫
|y|<2R

∫
Rn
u0(r)

e−
|y−r|2

4t

(4πt)n/2
drdy =

∫
|y|<2R

u(y, t)dy ≤ |2B|1/2||u(·, t)||L2(2B),344

where |2B| denotes the volume of the ball of radius 2R. For the second integral, due345

to the support of u0 we notice that346 ∫
|y|>2R

∫
Rn
u0(r)

e−
|y−r|2

4t

(4πt)n/2
drdy =

∫
|y|>2R

∫
|r|<R

u0(r)
e−
|y−r|2

4t

(4πt)n/2
drdy

=

∫
|r|<R

u0(r)

(∫
|y|>2R

e−
|y−r|2

4t

(4πt)n/2
dy

)
dr,

347

where the integral inside parenthesis can be bounded uniformly with respect to r by348

a constant α(R, t) ∈ (0, 1), increasing with respect to t. This yields349

(3.4)

∫
|y|>2R

∫
Rn
u0(r)

e−
|y−r|2

4t

(4πt)n/2
drdy ≤ α

∫
Rn
u0(r)dr.350

Bringing (3.2), (3.3) and (3.4) together we deduce the estimate:351

||u0||L1(Rn) =

∫
Rn
u0(r)dr ≤ (1− α)−1CR︸ ︷︷ ︸

=:C7

||u(·, t)||L2(2B).

352

The constant of the previous lemma can be chosen uniformly with respect to t in353

a closed interval [t1, t2] for t1 > 0:354

Corollary 3.2. Let 0 < t1 < t2. There exists a constant C8 = C8(R, t1, t2) > 0355

such that356

||u0||L1(R) ≤ C8||u||L2(2B×(t1,t2)).357
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What remains to be done is to get rid of the positiveness of u0:358

Proof of Theorem 1.3. Let u± be the solution to (1.1) with u±0 = max{±u0, 0}359

as initial condition respectively. Noticing that u±0 ≥ 0 and u± ≥ 0, Corollary 3.2 tells360

us that there exists a constant C8 > 0 such that361

||u±0 ||L1(Rn) ≤ C8||u±||L2(2B×(t1,t2)).362

Since u = u+ − u−, then363

(3.5)
||u0||L1(Rn) = ||u+

0 ||L1(Rn) + ||u−0 ||L1(Rn)

≤ C8

(
||u||L2(2B×(t1,t2)) + ||u−||L2(2B×(t1,t2))

)
.

364

Let us analyze the two following operators:365

Λ : u0 ∈ L1(B)→ u ∈ L2(2B × (t1, t2))366

367
Υ : u0 ∈ L1(B)→ u− ∈ L2(2B × (t1, t2)),368

and prove that Λ is a bounded and injective linear operator and Υ is a compact369

operator.370

In effect, we use Young’s inequality with p = 1, q = 2 and r = 2 (so that 1
p + 1

q =371

1
r + 1) to obtain372

||u−(·, t)||L2(2B) ≤ ||u−0 ||L1(Rn)
1

(4πt)n/2
||e−|y|2/4t||L2(Rn)

≤ ||u−0 ||L1(Rn)
1

(4πt)n/4

(∫
Rn

1

(4πt)n/2
e−|y|

2/4tdy

)1/2

≤ ||u−0 ||L1(Rn)
1

(4πt)n/4
,

373

where in the second step we used that e−a/2t ≤ e−a/4t for a > 0. From here we374

conclude that375

||u−||2L2(2B×(t1,t2)) ≤ ||u
−
0 ||2L1(Rn)

1

(4π)n/2


log(t2/t1), if n = 2

1

n/2− 1

(
t1

t
n/2
1

− t2

t
n/2
2

)
, if n 6= 2.

376

Hence, there exists a constant C > 0 such that377

(3.6) ||u−||L2(2B×(t1,t2)) ≤ C||u−0 ||L1(Rn) ≤ C||u0||L1(B),378

and analogously, we have379

||u+||L2(2B×(t1,t2)) ≤ C||u0||L1(B).380

Since u = u+ − u−, Λ turns out to be a bounded operator:381

||Λu0||L2(2B×(t1,t2)) = ||u||L2(2B×(t1,t2)) ≤ C||u0||L1(B).382

Let us verify the compactness of Υ. For this purpose we consider Υ as the383

composition of two operators Υ = Υ2 ◦Υ1 where384

Υ1 : u0 ∈ L1(B)→ u− ∈ L2(t1, t2;H1(2B))385
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386
Υ2 : u− ∈ L2(t1, t2;H1(2B))→ u− ∈ L2(2B × (t1, t2)).387

We claim that Υ1 is a bounded linear operator while Υ2 is compact. In fact,388

thanks to (3.6) it suffices to estimate the derivatives in order to conclude the bound-389

edness of Υ1:390

∇u−(y, t) =

(
u−0 (·) ∗ ∇ e−|·|

2/4t

(4πt)n/2

)
(y) =

(
u−0 (·) ∗ − ·

2t

1

(4πt)n/2
e−|·|

2/4t

)
(y).391

To estimate ||∇u−(·, t)||(L2(2B))n we use Young’s inequality with p, q and r as392

before getting393

||∇u−(·, t)||(L2(2B))n ≤ ||u−0 ||L1(Rn)
1

2(4π)n/2tn/2+1
||ye−|y|2/4t||(L2(Rn))n

=
C

tn/2+1
||u−0 ||L1(Rn)

(∫
Rn
|y|2e−|y|

2/2tdy

)1/2

=
C

tn/2+1
||u−0 ||L1(Rn)

(∫ ∞
0

rn+1e−r
2/2tdr

)1/2

,

394

where we have used spherical coordinates. Notice that395 ∫ ∞
0

rn+1e−r
2/2tdr = C(n)tn/2+1,396

hence,397

||∇u−(·, t)||(L2(2B))n ≤ C||u−0 ||L1(Rn)
1

tn/4+1/2
.398

Integrating in time from t1 to t2 we get399

||∇u−||2L2(2B×(t1,t2)) ≤ C||u
−
0 ||2L1(Rn)

(
1

t
n/2
1

− 1

t
n/2
2

)
.400

Thus we have estimated the spatial derivative401

||∇u−||L2(2B×(t1,t2)) ≤ C||u−0 ||L1(Rn) ≤ C||u0||L1(B).402

In conclusion Υ1 is bounded and thanks to Rellich-Kondrachov theorem Υ2 is403

compact (see for instance theorem 6.3 in [1]). Consequently, Υ is a compact operator404

and from (3.5) and proposition 6.7 in [21] we conclude that Λ is a closed operator.405

Finally, strong unique continuation property of the heat equation implies the injectiv-406

ity of Λ, thus, the open mapping theorem gives us the existence of a constant C > 0407

such that408

||u0||L1(Rn) ≤ C||Λu0||L2(2B×(t1,t2)) = C||u||L2(2B×(t1,t2)).409

We finish this section by demonstrating Theorem 1.2:410

Proof of Theorem 1.2. Let t1 = τ + ε and t2 = T − ε. From Theorem 1.3 there411

exists a constant C3 > 0 such that412

||u0||L1(Rn) ≤ C3||u||L2(2B×(τ+ε,T−ε)) ≤ C3||u||L2(Rn×(τ+ε,T−ε)).413

From Theorem 2.1 we know that there exists a constant C = C(ε) such that414

||u||L2(Rn×(τ+ε,T−ε)) ≤ C||u||L2(ω×(τ,T ))415

which concludes the proof.416
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Remark 3.3. The constant C = C(ε) in the above inequality comes from Theo-417

rem 2.1 and is equal to (see Item I in the proof of Theorem 2.1)418

C(ε) = exp

(
ŝK

ε(T − τ − ε)

)
C

ε(T − τ − ε)
.419

For instance, we can take ε = (T − τ)/4 obtaining a constant for Theorem 1.2 of420

the form421

C2 = exp

(
ŝK

(T − τ)2

)
C3

(T − τ)2
.422

4. Reconstruction of the initial conditions from measurements made423

on a curve. Another problem we are interested in is a stability result for the re-424

construction of the compactly supported initial temperature u0 for the heat equation425

(1.1) with n = 1, from observations made on a curve contained in R× [0,∞) and sat-426

isfying certain properties, a problem that arises naturally from the LSFM model that427

shall be explained in section section 5. In this section we shall prove Theorem 1.4.428

The curve where observations are available is constructed as the graph of a positive429

function σ : R → R+ satisfying the σ−properties that we recall (see Figure 1 as a430

reference):431

i) σ ∈ C1(R),432

ii) σ > 0 for y ∈ (a1, a2) and σ(y) ≡ 0 for y ∈ (a1, a2)c, for some a1 < a2,433

iii) there exists ξ1, ξ2 > 0 such that σ′ > 0 in (a1, a1 + ξ1], σ′ < 0 in [a2− ξ2, a2) and434

σ(a1 + ξ1) = σ(a2 − ξ2),435

iv)
1

σ′(y)
= O

(
exp

(
1

σ(y)

))
as y goes to a+

1 , a
−
2 .436

Fig. 1. Representation of σ-properties and the relation of supp(σ) with the initial condition u0
for Theorem 1.4.

Defining T := σ(a1 + ξ1) and as a consequence of conditions i)-iii), we can define437

the function ρL(t) := σ−1(t) ∈ C1(0, T ) ∩ C[0, T ], the inverse of σ to the right of a1,438

by restricting σ to the interval [a1, a1 + ξ1]. Thus, we can parameterize the curve ΓL439

as {(ρL(t), t) : 0 ≤ t ≤ T}. Analogously, since σ is strictly decreasing in [a2 − ξ2, a2),440

we define ρR(t) := σ−1(t) ∈ C1(0, T ) ∩ C[0, T ] the inverse of σ to the left of a2,441

then we parameterize ΓR as {(ρR(t), t) : 0 ≤ t ≤ T}. The sketch of the proof is as442

follows: we define the set ω := [a1, a2]c as the observation region and consider the443

time interval of observation as (0, T ). From Theorem 1.2, we are able to estimate444

u0 with respect to the energy of u in ω × (0, T ). Certainly, the energy there is less445
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than the energy up to the curves ΓL and ΓR, corresponding to the regions L and R in446

Figure 1. Consequently, to conclude Theorem 1.4 we need to estimate the energy in447

the region L with respect to the observations made on the curve ΓL and do the same448

for the region R. This is exactly what Theorem 4.1 establishes:449

Theorem 4.1. Let u be a solution of (1.1) with n = 1 and u0 be the initial450

condition. Consider ΓL the curve constructed from the function σ satisfying prop-451

erties. If u0 ∈ L1(R) with supp(u0) ⊂ (a1 + δ, a2 − δ) then there exists a constant452

C9 = C9(σ, δ) > 0 such that453

1

2

∫ T

0

∫ ρL(τ)

−∞
|u(y, τ)|2dydτ ≤ C9T ||u0||L1(R)||u||L1(ΓL).454

Proof. We define the left sided exterior energy as455

IL(t) :=
1

2

∫ ρL(t)

−∞
|u(y, t)|2dy, t ∈ [0, T ),456

and we differentiate it in order to get457

dIL
dt

(t) =
1

2
u2(ρL(t), t)ρ′L(t) +

∫ ρL(t)

−∞
u(y, t)ut(y, t)

=
1

2
u2(ρL(t), t)ρ′L(t) +

∫ ρL(t)

−∞
u(y, t)uyy(y, t)

=
1

2
u2(ρL(t), t)ρ′L(t) + u(ρL(t), t)uy(ρL(t), t)−

∫ ρL(t)

−∞
|uy(y, t)|2dy.

458

In what follows, we shall denote gL(t) := u(ρL(t), t) for t ∈ (0, T ), the measurements459

of u on ΓL. Then460

(4.1)

dIL
dt

(t) =
1

2
g2
L(t)ρ′L(t) + gL(t)uy(ρL(t), t)−

∫ ρL(t)

−∞
|uy(y, t)|2dy

≤ 1

2
g2
L(t)ρ′L(t) + gL(t)uy(ρL(t), t).

461

We would like to bound the expression above so that the right-hand side depends only462

on the measurements gL. Once we have that, we will integrate from 0 to t so that the463

left-hand side leads to IL(t) getting an estimate of IL in terms of gL.464

For the first term in the right-hand side of (4.1) we see that Items i and ii imply465

that σ′(y) → 0 when y → a1 and ρ′L(t) → ∞ when t → 0, thus we need to control466

this latter growth with the decay of gL(t) in the same limit. For the second term we467

directly estimate uy(ρL(t), t).468

I) Let us analyze the term gL(t)ρ′L(t) in (4.1) for t in (0, T ), which turns out to be469

equivalent to study
gL(σ(y))

σ′(y)
for y in (a1, a1 + ξ1]. Owing to the support of u0470

we have that471 ∣∣∣∣gL(σ(y))

σ′(y)

∣∣∣∣ ≤ ∫ a2−δ

a1+δ

|u0(r)|
(4πσ(y))1/2σ′(y)

exp

(
−|y − r|

2

4σ(y)

)
dr,472

for y ∈ (a1, a1 + ξ1]. The term multiplying |u0(r)| inside the previous integral473

may be uniformly bounded for (y, r) ∈ [a1, a1 + ξ1] × [a1 + δ, a2 − δ]. In effect,474
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a singularity may occur when y approaches a1, but if |a1 − y| < δ/2, and since475

|a1 − r| ≥ δ, then we have476

|a1 − r| ≤ |y − r|+ |a1 − y| < |y − r|+ δ/2 < |y − r|+ |a1 − r|/2,477

and then478

|y − r| > 1/2|a1 − r| > δ/2,479

hence480

1

σ(y)1/2σ′(y)
exp

(
−|y − r|

2

4σ(y)

)
≤ 1

σ(y)1/2σ′(y)
exp

(
− δ2

σ(y)

)
481

Plugging Item iv to the previous estimate we conclude the existence of a constant482

C > 0 such that483 ∣∣∣∣gL(y)

σ′(y)

∣∣∣∣ ≤ C ∫ a2−δ

a1+δ

|u0(r)|dr = C||u0||L1(R).484

II) Now we estimate uy(ρL(t), t) in (0, T ] for the second term in the right-hand side485

in (4.1), or, equivalently, uy(y, σ(y)) in (a1, a1 + ξ1]. First recall that486

uy(y, σ(y)) =

∫ a2−δ

a1+δ

u0(r)√
4πσ(y)

exp

(
− (y − r)2

4σ(y)

)
−|y − r|

2σ(y)
dr.487

Again, the term accompanying |u0(r)| is uniformly bounded for (y, r) ∈ [a1, a1 +488

ξ1]× [a1 + δ, a2 − δ] by continuity. In conclusion,489

|uy(ρL(t), t)| ≤ C
∫ a2−δ

a1+δ

|u0(r)|dr = C||u0||L1(R).490

Bringing all the previous estimates together along with (4.1) it yields491

dIL
dt

≤ 1

2
|g2
L(t)||ρ′L(t)|+ |gL(t)||uy(ρL(t), t)|

≤ C||u0||L1(R)|gL(t)|,
492

thus, integrating from 0 to τ leads to493

IL(τ) ≤ C||u0||L1(R)

∫ τ

0

|gL(t)|dt.494

Integrating again in time from 0 to T , we get that495

1

2

∫ T

0

∫ ρL(τ)

−∞
|u(y, τ)|2dydτ =

∫ T

0

IL(τ)dτ

(Fubini) ≤ CT ||u0||L1(R)

∫ T

0

|gL(t)|dt

= CT ||u0||L1(R)||u||L1(Γ).496

Remark 4.2. So far, we have estimated the energy in region L (see Figure 1) with497

respect to the measurements available on ΓL. Analogously, we can do the same to498

estimate the energy contained in region R with respect to measurements available on499

ΓR. Same calculations as before leads to500

1

2

∫ T

0

∫ ∞
ρR(τ)

|u(y, τ)|2dydτ ≤ C9T ||u0||L1(R)||u||L1(ΓR).501
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We are now able to conclude the desired stability:502

Proof of Theorem 1.4. Let ω = [a1, a2]c. By Theorem 1.2 there exists a constant503

C2 > 0 such that504

(4.2) ||u0||L1(R) ≤ C2||u||L2(ω×(0,T )).505

Moreover, Theorem 4.1 implies506

(4.3)
||u||2L2(ω×(0,T )) ≤

∫ T

0

∫ ρL(τ)

−∞
|u(y, τ)|2dydτ +

∫ T

0

∫ ∞
ρR(τ)

|u(y, τ)|2dydτ

≤ C9||u0||L1(R)T (||u||L1(ΓL) + ||u||L1(ΓR)).

507

We conclude with (4.2) and (4.3).508

Remark 4.3. The stability constant decreases with respect to T , which is natu-509

ral from the fact that a larger T means we use more information contained in our510

measurements. In fact, taking ε = T/4 (as in Remark 3.3) the constant turns out to511

be512

C9C
2
2T = C9exp

(
ŝK

T 2

)
C2

3

T 4
T = C9exp

(
ŝK

T 2

)
C2

3

T 3
.513

5. Stability for 2D LSFM inverse problem. LSFM is an instrument that514

allows researchers to observe live specimens and dynamical processes by attaching515

fluorophores to certain cellular structures. After attaching fluorophores, the process516

of imaging the specimen is carried out in two steps: illumination (or excitation) and517

fluorescence. In the first stage a slice of the object is illuminated with a light sheet,518

exciting fluorophores therein. Subsequently, in the second stage, a camera measures519

the fluorescent radiation obtaining a two dimensional image. The microscope then520

scans plane by plane so that a stack of two dimensional images is collected, which521

represents the three dimensional object. In [6] a two dimensional model is considered,522

hence, the illumination takes the form of a laser beam issued from different heights523

instead of light sheets. The Fermi-Eyges pencil-beam equation governs the illumina-524

tion process, describing the space and angular distribution of photons. During the525

fluorescence step, photons coming out from fluorescent molecules propagate in several526

directions reaching the camera. The Radiative Transport Equation is used to model527

this second step [2]. The whole process is represented in Figure 2.528

Let us recall some of the definitions given in [6] for the setting of the LSFM529

model: we consider the domain Ω ⊆ [0, s1] × [−y1, y1] as the object to be observed.530

For y ∈ [−y1, y1] we define xy = inf{x : (x, y) ∈ Ω}. For s ∈ [0, s1] we define531

Ys = {y ∈ [−y1, y1] : xy ≤ s}, s− = inf{s : Ys 6= ∅}532

Let s+ be the largest s such that [xy, s] × {y} ⊆ Ω. For a fixed s ∈ [s−, s+] we533

define
¯
y =

¯
y(s) = inf(Ys) and ȳ = ȳ(s) = sup(Ys), which, in what follows, we shall534

call them object top boundary and object bottom boundary respectively. For s+ we535

denote y+ = ȳ(s+) and y− =
¯
y(s+). Finally, we define the function γ : Ys → [0, s+]536

as γ(y) = xy. See Figure 3 for these definitions.537

There are two physical parameters involved during the illumination stage: the538

attenuation λ, corresponding to a measure of absorption of photons, and ψ corre-539

sponding to a measure of scattering which explains the broadening of the laser beam540

shown in Figures 2 and 3. On the other hand, in the second stage the third physical541

parameter involved is the attenuation a, a measure of absorption of fluorescent radi-542

ation. We assume that λ, a ∈ Cpw(Ω), ψ ∈ C1(Ω), and γ ∈ C1(Ys). According to543
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Camera

Fig. 2. Representation of illumination and fluorescence stages in LSFM. A laser beam is
emitted at height y and illuminates the object from left. Due to scattering, photons are deflected
from their original direction. Some fluorophores got excited (in yellow), the others (in dark green)
will not fluoresce. Since we assume the camera is collimated, it will measure only photons emitted
in straight vertical direction.

[6], the measurement obtained by the camera at pixel s when illumination is made at544

height y ∈ Ys is given by the next expression:545

(5.1)

p(s, y) = c · exp

(
−
∫ s

γ(y)

λ(τ, y)dτ

)∫
R

µ(s, r)e−
∫∞
r
a(s,τ)dτ√

4πσ(s, y)
exp

(
− (r − h)2

4σ(s, y)

)
dr,546

where547

(5.2) σ(s, y) =
1

2

∫ s

γ(y)

(s− τ)2ψ(τ, y)dτ.548

Camera

Fig. 3. Left figure presents the definition of the quantities s− and s+ and the set Ys+ for a
generic set Ω. Right figure shows the function γ and its domain Ys+ in the new coordinates.
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In what follows, we shall fix s and consider the functions p(y) := p(s, y) and549

σ(y) := σ(s, y), so that p represents the measurements obtained at a pixel s, as a550

function of the height of illumination y. Besides, we identify p and σ with their zero-551

extension to the whole real line. If we consider u as the solution of equation (1.1) with552

n = 1 and initial condition u0(y) = µ(s, y)e−
∫∞
y
a(s,τ)dτ then we have the following553

relation:554

(5.3) u(y, σ(y)) =
1

c
exp

(∫ s

γ(y)

λ(τ, y)dτ

)
p(y), ∀y ∈ R.555

The above equation tells us that we have measurements of the solution of the heat556

equation in R on the curve Γ := {(y, σ(y)) : y ∈ R} ⊆ R × [0,∞). Then, if we want557

a stability result for this inverse problem, it only remains to verify the hypothesis of558

Theorem 1.4. For this purpose, let us define a set of admissible sources: let Ω̃ ( Ω be559

an open subdomain strictly contained in Ω and define B the set of admissible sources560

as (see Figure 4):561

(5.4) B := {µ ∈ L1(R2) : µ(s, ·) ∈ L1(R),∀s ∈ (s−, s+), supp(µ) ⊂ Ω̃.}562

The main result of this section is the following theorem563

Theorem 5.1. Let µ ∈ B, s ∈ (s−, s+). Then, there exists a constant C10 =564

C10(σ, s) > 0 such that565

∣∣∣∣∣∣µ(s, ·)e−
∫∞
· a(s,τ)dτ

∣∣∣∣∣∣
L1(R)

≤ C10

(∣∣∣∣∣∣∣∣1c p(·)e∫ sγ(·) λ(τ,·)dτ
∣∣∣∣∣∣∣∣
L1((

¯
y,

¯
y+ξ1)∪(ȳ−ξ2,ȳ))

)
,566

and therefore567

||µ(s, ·)||L1(R) ≤ C11||p||L1((
¯
y,

¯
y+ξ1)∪(ȳ−ξ2,ȳ)),568

where569

C11 =
C10

c
exp(||a(s, ·)||L1(R) + ||λ||L∞(R2)(s− s−)).570

Fig. 4. Assumptions for Theorem 5.1. The supp(µ) must be far from ∂Ω, which is accomplished
by letting µ ∈ B.
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Proof. Recall that we consider µ(s, ·)e−
∫∞
· a(s,τ)dτ as the initial condition of the571

heat equation in R and measurements are given according to (5.3). As in Figure 4,572

since µ ∈ B, for the fixed s there exists a constant δ = δ(s) > 0 such that µ(s, ·) ≡ 0573

in (
¯
y,

¯
y+δ)∪ (ȳ−δ, ȳ), i.e., supp(µ(s, ·)e−

∫∞
· a(s,τ)dτ ) ⊂ (

¯
y+δ, ȳ−δ). Now, it suffices574

to prove that σ satisfies the σ−properties:575

i) From (5.2) we have that576

(5.5)

σ′(y) = −1

2
γ′(y)(s− γ(y))2ψ(γ(y), y) +

1

2

∫ s

γ(y)

(s− τ)2 ∂ψ

∂y
(τ, y)dτ, for y ∈ Ys.577

By the regularity of γ and ψ, we get that σ ∈ C1(Ys). Furthermore σ′(
¯
y) =578

σ′(ȳ) = 0 since γ(ȳ) = γ(
¯
y) = s. We conclude that σ ∈ C1(R) by noticing that579

σ′(y) = 0 for y /∈ Ys.580

ii) From (5.2) and the zero-extension of σ, it is direct that σ > 0 for y ∈ (
¯
y, ȳ) and581

σ(y) = 0 for y ∈ (
¯
y, ȳ)c.582

iii) From (5.5) we get that583

(5.6) σ′(y) ≥ 1

2
(s− γ(y))2

[
−γ′(y)ψ(γ(y), y)−

∫ s

γ(y)

|ψy(τ, y)|dτ

]
.584

Let m := inf
(x,y)∈Ω

|ψ(x, y)| and M := sup
(x,y)∈Ω

∣∣∣∣∂ψ∂y (x, y)

∣∣∣∣. Then585

2σ′(y)

(s− γ(y))2
≥ −γ′(y)m− 1

3
(s− γ(y))M −−−−→

y→
¯
y+
−γ′(

¯
y)m586

Recalling that γ′(
¯
y) < 0 we conclude the existence of ξ1 > 0 such that σ′ > 0 in587

(
¯
y,

¯
y + ξ1]. By letting y → ȳ− instead of

¯
y+ we obtain the existence of ξ2 > 0588

such that σ′ < 0 in [ȳ − ξ2, ȳ). Furthermore, we redefine ξ1 and ξ2 such that589

σ(
¯
y + ξ1) = σ(ȳ − ξ2) = min{σ(

¯
y + ξ1), σ(ȳ − ξ2)}.590

iv) Finally, we not only prove that
1

σ′(y)
= O

(
exp

(
1

σ(y)

))
as y goes to

¯
y+ and591

ȳ− but lim
y→

¯
y+

1

σ′(y)
exp

(
− 1

σ(y)

)
= 0. For the limit as y goes to ȳ− the argument592

is analogous. In effect, from (5.6) we get that593

σ′(y) ≥ C(s− γ(y))2, for y ∈ (
¯
y,

¯
y + ξ1].594

Secondly, notice that595

σ(y) =
1

2

∫ s

γ(y)

(s− τ)2ψ(τ, y)dτ ≤ C(s− γ(y))3.596

Then, since γ(
¯
y) = s we have that597

1

σ′(y)
exp

(
− 1

σ(y)

)
≤ 1

C(s− γ(y))2
exp

(
− 1

C(s− γ(y))3

)
→ 0, as y →

¯
y+,

598

We conclude by applying Theorem 1.4.599

This manuscript is for review purposes only.



22 P. ARRATIA, M. COURDURIER, E. CUEVA, A. OSSES AND B. PALACIOS

Remark 5.2. Certainly, the stability constant C10 is equal to C4 in Theorem 1.4.600

If we define T1 := σ(a1 + ξ1) and T2 := σ(a2 + ξ2), then we may consider the time601

T = min{T1, T2} as in Figure 5. In the next section, we shall study the dependence602

of the stability constant with respect to this variable T .603

Fig. 5. Curve Γ on which measurements are available for LSFM model. In this example, we
must consider the variable T = T2.

6. Numerical results in LSFM. In this section, we analyze the behavior of the604

stability constant C10 given by Theorem 5.1. Mainly, we observe its dependency with605

respect to the variable T , defined by T = min{T1, T2}, as commented in Remarks 4.3606

and 5.2 (see Figure 5). We recall that the definition of T depends on the monotonicity607

of function σ defined in terms of the diffusion coefficient ψ in (5.2). Moreover, since the608

result given by Theorem 5.1 considers µ ∈ B, i.e. supp(µ) ⊂ Ω̃, we show below that609

the constant C10 increases as the support of µ gets closer to the boundary of Ω̃, and610

the stability is not guarantied when we reach ∂Ω̃. We devote part of the experiments611

to analyze the observation interval (
¯
y,

¯
y+ ξ1)∪ (ȳ− ξ2, ȳ), to understand not only the612

stability of reconstructing µ(s, ·) but also, the quality of its reconstruction.613

6.1. Datasets. We consider three datasets as shown in Figure 6. Source in614

Dataset 1 describes a random distributed fluorescent sources supported in a circular615

domain. The attenuation λ in the illumination stage is constant and supported in616

Ω with radius greater than the support of µ to guarantee the hypothesis (5.4). This617

latter condition is also considered in the other two datasets. The source in Dataset618

2 is also randomly distributed in a support with a particular shape, this choice has619

the purpose of analyzing the behavior of the function σ in terms of its increasing and620

decreasing intervals as we will see in subsection 6.3 below. The attenuation is also621

constant as before. The third dataset aims to be closer to a real LSFM applications.622

We have simulated a zebrafish larvae merged in an circular support with a constant623

attenuated substance. The source in real experiments determines, for example, zones624

with multicellular chemical reactions. The attenuation is composed by a constant625

background and a contribution given by the presence of the fluorescent source, i.e,626

λ = w11Ω̃ + w2µ. In all cases, the diffusion term is defined by ψ = cλ, with c > 0,627

which means that the diffusion is proportional to the attenuation properties of the628

medium.629

Our first interest is to show that the constant C10 in Theorem 5.1 has a relation-630

ship with the support of µ, i.e. the further we are from the boundary of Ω̃, the better631

the stability of reconstructing µ is. This analysis is based on the condition number of632

a matrix As that we detail below in subsection 6.2. We use Dataset 1 and Dataset633

2 to observe the proposed assay.634
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Dataset 1 Dataset 2 Dataset 3

S
o
u

rc
e
µ

0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 1.5 2 2.5 3 0 0.2 0.4 0.6 0.8 1

D
iff

u
si

o
n
ψ

0 0.5 1 1.5 2 2.5 3

10
-3

0 0.002 0.004 0.006 0.008 0.01 0.012 0 0.01 0.02 0.03 0.04 0.05

Fig. 6. Data sets. In the upper row, the sources µ for three different supports and in the
bottom row, the corresponding diffusion maps. Dataset 1 considers random distributed circles with
constant attenuation. Dataset 2 is defined on an irregular support useful to analyse the function σ.
Dataset 3 aims to be closer to a real experiment where a zebrafish embryo profile is simulated.

6.2. Condition number of matrix As in terms of suppµ(s, ·). In the635

discrete case, as it was detailed in [6], recovering µ is established as the solution of a636

linear system637

Aµ = b638

where A ∈ Rm×n links the vectorized source µ ∈ Rn to the array of measurements639

b ∈ Rm. This is a direct consequence of the linear nature of measurements p(s, y)640

in (5.1) respect to the unknown variable µ.641

The set of measurements considers m1 heights of excitation (illuminations) and642

m2 detectors using just one camera. The excitation process is made from right and643

left sides and, consequently, the number of observations is m = 2 ·m1 ·m2.644

As we are interested on µ(s, ·) for a given s ∈ (s−, s+) based on Theorem 5.1, we645

use the condition number of a submatrix As of A to know how stable is to reconstruct646

the restriction of µ to the depth s. This matrix As chooses the rows of A associated647

to the observations receipted by the detector s, one for each illumination, i.e. As has648

ms = 2 ·m1 rows. Furthermore, we want to study the stability in terms of suppµ,649

so we choose the columns of A where the support of µ(s, ·) is defined, this means650

that we focus on the pixels where the discrete source is nonzero. Observe that for651

larger values of the radius, more columns of A are taken. With this row and column652

sampling, we determine the submatrix As whose condition number value (cond(As))653

is represented in Figure 7 for Dataset 1 and Dataset 2 in upper and bottom rows,654

respectively.655

For Dataset 1, the circular shape of suppµ allows us to easily control its prox-656
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imity to Ω̃. As it is presented in the right hand side of Figure 7, we test radius from657

0.55 until 0.8 in Ω = [0, 2] × [−1, 1], the maximum value r = 0.8 is the radius that658

defines Ω̃. As it is expected, the condition number increases when the support of µ659

tends to the boundary of Ω̃, this is shown in the left hand side of Figure 7. We also660

include different values of s to observe that this condition number also depends on661

this variable at least when the diffusion term ψ is constant. The values of s varies662

from 0.66 to 0.96, and the value of cond(As) tends to increase when we go deeper in663

the object. This makes sense in the light of LSFM applications since the middle part664

of the object is harder to be observed directly from the measure process, and solving665

the inverse problem is also challenging in this zone. A similar result is observed for666

Dataset 2, we have define five different sizes of supports and five depths s. The667

condition number of the corresponding matrices As increases when we get closer to668

the boundary of Ω̃. We also observe that the conditioning is worse for small values of669

s compare to the previous example, this is also related to the number of illuminations670

in each depth s, we will observe this in detail in subsection 6.4.
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Fig. 7. Left: Condition number of matrix As in terms of the size of the support of µ for Dataset

1 in the upper row and, for Dataset 2 in the bottom row. Each line is related to the depth s as is
shown in right figure. Right: The different supports in terms of support and depths s considered to
computed the conditional number.

671

In the subsection below, we study in detail the observation intervals (
¯
y,

¯
y + ξ1) ∪672

(ȳ − ξ2, ȳ) for a particular choice of s using the three datasets. This will be used673

later to compare the condition number of As when the illuminations are taken in the674

aforementioned interval or in the complete interval (
¯
y, ȳ).675
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6.3. Object top and bottom boundaries. Here, we use our three sets of data676

to identify the σ-properties in each case. We aim to do a representation as the one677

shown in Figure 5.678

For Dataset 1, the shape of Γ is a symmetric curve respect to the origin as is679

shown in Figure 8. This is a direct consequence of the constant diffusion ψ and a680

circular domain Ω̃ centered in the origin. We observe that σ′(y) > 0 in the interval681

(−0.789, 0) and σ′(y) < 0 in (0, 0.789), so T1 = T2 = 3.109 × 10−4 and is reached682

at y = 0. According with these values, the observation set (
¯
y,

¯
y + ξ1) ∪ (ȳ − ξ2, ȳ)683

specified in Theorem 5.1 corresponds to the interval (−0.789, 0.789).
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Fig. 8. Curve Γ for Dataset 1 at s = 0.88. On the left, the constant diffusion defined over a
circle with centre in the origin and r = 0.8. The vertical line defines the observed value of s. On
the right, σ(y) defines a symmetric curve Γ where T = T1 = T2.

684
For Dataset 2, the curve Γ presents a convexity near the origin as is shown685

in Figure 9. This behaviour is due to the particular shape of Ω̃, the diffusion map686

presents a lateral sag that is not perfectly symmetric respect to the origin in y-axis, as687

a consequence, the values of T1 = σ(
¯
y + ξ1) and T2 = σ(ȳ − ξ2) are slightly different.688

More precisely, T1 = 8.48×10−4, T2 = 8.31×10−4 and T = T2. In this case, σ′(y) > 0689

in (
¯
y,

¯
y + ξ1) = (−0.589,−0.232) and σ′(y) < 0 in (ȳ − ξ2, ȳ) = (0.174, 0.577).
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Fig. 9. Curve Γ for Dataset 2 at s = 0.959. On the right, the constant diffusion where the
vertical line defines the observed value of s. On the left, σ(y) defines the curve Γ with a convexity
around the origin. T1 and T2 are marked as dots and, increasing and decreasing zones are identified.
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For Dataset 3, the curve Γ has a different behaviour due to the particular election690

of the diffusion term. As before, we have identified the illumination intervals based691

on the values of T1 and T2 as is presented in Figure 10. In this case, T = T2 and692

¯
y + ξ1 = −0.362 and ȳ − ξ2 = 0.311. As the support of σ is [y, y] = [−0.601, 0.553],693

the illumination set in this case is defined over (−0.601,−0.362) ∪ (0.311, 0.553).

0   0.25 0.5 0.75 1   1.25 1.5 1.75 2   

1    

0.75 

0.5  

0.25 

0    

-0.25

-0.5 

-0.75

-1   0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

-1 -0.5 0 0.5 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
10

-4

Fig. 10. Curve Γ for Dataset 3 at s = 0.959. On the right, the diffusion caused by the presence
of the specimen, the fluorescent source and the circular medium where the zebrafish is merged. The
vertical line defines the observed value of s. On the left, σ(y) defines the curve Γ and, the values of
T1 and T2 are marked as dots.

694
Once we have determined the observations regions, we use this (limited-) infor-695

mation below to reconstruct µ(s, ·) and compare it with the reconstruction obtained696

when a full set of observations is used. This last experiment aims to show the asser-697

tion made in Remark 4.3. Let us first observe the conditioning of a matrix As when698

full illumination are considered compared to the limited set of illuminations defined699

by σ-properties. For this experiment, we have considered Dataset 2 and Dataset 3700

where full and limited illuminations differ. In Figure 11, we present function σ for701

different values of s, as in Figures 9 and 10, we determine the observation intervals702

that are also detailed in Table 1. Once, we select the illumination set, we can choose703

the corresponding rows of the matrix A to build As in each case. The condition704

number of As is plotted in the right hand side of Figure 11 for Dataset 2 in the top705

row and, for Dataset 3 in the bottom row. The main difference between the dotted706

and continued lines is what we expected by Theorem 5.1, the stability of reconstruct-707

ing µ(s, ·), observed through the condition number of As, is worse when we have less708

observations, i.e. when the value of T is smaller as in Remark 4.3. For Dataset 3709

in the full-observation case, the condition number does not have strict growth as we710

increase the variable s, this is due to the variability of the diffusion map.711

Finally, we illustrate the measurement process using Dataset 3, we explain how712

to get the set of measurements after illuminating and counting photons in one camera.713

We select the data associated to a particular s to reconstruct µ(s, ·) when limited and714

full illuminations are considered.715
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Fig. 11. Condition number of As matrix. Top row: results for Dataset 2 when different values
of s are considered. On the left hand, the σ function is plotted to identify the observation intervals
determined by the top and bottom boundaries. On the right hand, cond(As) for full and limited
illuminations are plotted. The bottom row considers the same results for Dataset 3. The limited
case depends on the intervals defined in Table 1.

Table 1
Observation intervals for Dataset 2 and Dataset 3. For different values of s between 0.67 and

0.99, we analyze the behaviour of σ given in Figure 11 to determine the intervals (
¯
y,

¯
y+ξ1)∪(ȳ−ξ2, ȳ)

as in Figures 9 and 10.

s Dataset 2 Dataset 3

0.67 (−0.566,−0.233) ∪ (0.174, 0.562) (−0.577,−0.354) ∪ (0.295, 0.534)

0.75 (−0.577,−0.233) ∪ (0.174, 0.569) (−0.597,−0.358) ∪ (0.303, 0.55)

0.83 (−0.585,−0.233) ∪ (0.174, 0.573) (−0.597,−0.358) ∪ (0.307, 0.55)

0.91 (−0.589,−0.233) ∪ (0.174, 0.577) (−0.601,−0.362) ∪ (0.311, 0.554)

0.99 (−0.589,−0.233) ∪ (0.174, 0.577) (−0.605,−0.366) ∪ (0.311, 0.558)

6.4. Reconstructions based on parameter T . In this part, we aim to re-716

construct µ(s, ·) for a fixed value of s using Dataset 3. We will see that this recon-717

struction is stable in terms of Theorem 5.1. The resulting set of measurements after718

illuminating along all possible heights is represented in Figure 12. We can observe719

a blurred image which represents the effects of the diffusion (scattering) during the720

excitation stage. These measurements were also perturbed by Poisson noise to avoid721

inverse crime during the reconstruction.722

In Figure 13, we present the reconstruction of µ(s, y) for s = 0.969, the left hand723
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Fig. 12. Noise measurements for Dataset 3. For each illumination height y in y-axis, the
corresponding row in the image represents the number of photons (scaled as intensity) that is observed
by the camera after the excitation beam is emitted at the point (0, y). The vertical line marks the
depth s considered to reconstruct µ(s, ·).

side of this figure presents the σ function needed to determine the object top and bot-724

tom boundaries. As was analyzed before, the illuminations used in Theorem 5.1 that725

determine measurements are taken in the set I = (−0.602,−0.375)∪(0.344, 0.555). On726

the right side of Figure 13, we show the source µ(s, y) as ground truth, the reconstruc-727

tion using only illuminations over I (limited illuminations) and, the reconstruction728

for illuminations over (−0.602, 0.555) (full illuminations). These reconstructions are729

associated to the solution of a linear system of the form Asµs = bs that were solved730

using simultaneous algebraic reconstruction technique method (sart) provided by the731

MATLAB package IR Tools [8]. We observe that a stable reconstruction is possible732

in both cases but the lack of information in the limited-illumination case produces a733

gross reconstruction in the non-observable region.
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Fig. 13. Reconstruction of µ(s, ·) for s = 0.969 using Dataset 3. On the left, σ function for
the selected s with the corresponding observation interval whose limits are represented by a dashed
line. On the right, µ(s, ·) and its limited and full reconstructions are added as profiles for ease of
comparison.

734
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7. Conclusions. Two novel results has been established with respect to the735

stability for the reconstruction of the initial temperature for the heat equation in736

Rn, for distinct domains of observation of the form ω × (τ, T ). Typical results in737

the literature for the backward heat equation problem provide us with logarithmic738

estimates when incorporating some a priori information on the initial condition. In739

our case, we have been able to improve those estimates to a Lipschitz one, at least for740

compactly supported initial conditions. We expect that this result may be extended741

for more general initial temperatures. Furthermore, another interesting stability result742

is obtained for the reconstruction of the initial temperature for the heat equation in743

R when measurements are available on a curve Γ ⊂ R× [0,∞), a problem that arises744

from the LSFM model established in [6]. However, we have to be careful with these745

results, more specifically, we highlight the stability constant. Recall that this constant746

comes, in part, from the open mapping theorem, which ensure just the existence of747

this term, without giving any information about the dependency on the parameters748

of the problem. Consequently, if this constant is too large in comparison to the noise749

level in the measurements, then we can not expect a good reconstruction from the750

numerical point of view, despite the Lipschitz estimate. In fact, as numerical results751

indicate, even though a small noise is added to the measurements, the initial condition752

reconstructed is away from the real one in those sections where measurements are not753

taken into account, which give insights of a high value for the stability constant.754

We expect that the result may be improved by considering all the measurements755

available and not restricting to those heights of illumination for which σ is increasing756

or decreasing.757
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